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Abstract
We prove that a special Lipkin–Meshkov–Glick model is quasi-exactly solvable
with solutions that can be expressed in the SU(2) coherent state form. Ground-
state properties of the model are studied analytically. We also show that the
model reduces to the standard two-site Bose–Hubbard model in the large-N
limit for finite U/t or large (N −1)|U |/t cases with finite N, which proves that
in these cases the ground state of the standard two-site Bose–Hubbard model
is an SU(2) coherent state.

PACS numbers: 03.65.Ud, 75.40.Cx, 03.75.Lm, 03.65.Fd

1. Introduction

It is well known that the Lipkin–Meshkov–Glick (LMG) model [1–3] that originated from
nuclear many-body problems is related to a broad range of other fields, such as spin
systems [4], Bose–Einstein condensates [5], quantum entanglement [6], etc. The ground-
state entanglement entropy has been analyzed [7]. Further, the large-N behavior of the model
has been explored using a semiclassical approach [8]. The finite-size scaling behavior has
also been investigated [9]. Though the model is known to be exactly solvable [10, 11], and
the numerical analysis for systems with small number of bosons is possible, large-N cases
have not been reachable with the techniques used up until now. A special case of the model is
also related to the standard two-site Bose–Hubbard model [12], which has been investigated
widely by many authors using various methods, such as the Gross–Pitaevskii approximation
[13], mean-field theory [14, 15], the quantum phase model [16] and the Bethe ansatz method
[17]. The temporal evolution of the expectation value for the relative number of particles
between the two condensates for different choices of the coupling parameter and distinct
initial states has been analyzed [18]. Quantum phase transitions of the model have been
studied by using the Bogoliubov approximation [19] and a Bethe ansatz solution for relatively
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low number of system bosons [20]. Chaotic and semi-classical properties of a similar model
have also been presented [21, 22].

Generally speaking, quantum phase transitions in a quantum many-body system should
be defined in the thermodynamic (large-N) limit, although the transitional behavior may also
be observable mesoscopically. Since large-N limit is not reachable, a coherent state algorithm,
such as the one introduced by Gilmore based on an algebraic coherent state constructed
according to the dynamical symmetry group of a system [23, 24], has often been adopted to
investigate quantum phase transition phenomena, for example, in the interacting boson model
for nuclei, which allows one to take the N → ∞ limit called the classical or mean-field
limit. It is commonly accepted that the algorithm used to analyze quantum phase transitions
is reliable.

The purpose of this paper is twofold. First, we will show that a special Lipkin–Meshkov–
Glick (LMG) model corresponding to an extended two-site Bose–Hubbard model is quasi-
exactly solvable with solutions that can be expressed in terms of the SU(2) coherent state form.
Second, we will show that the ground state of the standard two-site Bose–Hubbard model in
the large-N limit is indeed an SU(2) coherent state under the condition (N − 1)|U |/t � 1,
which corresponds to a Mott-insulate phase. It follows from this that the SU(2) coherent state
cannot be used to describe the standard two-site Bose–Hubbard model at the critical point.

2. A quasi-exactly solvable case

We consider a special LMG model with the Hamiltonian

Ĥ = −t (J+ + J−) + UJ 2
0 + δ

(
J 2

+ + J 2
−
)
, (1)

where Jμ (μ = +,−, 0) are generators of the SU(2) algebra, which satisfy commutation
relations [J0, J±] = ±J±, [J+, J−] = 2J0. Note that the Hamiltonian (1) corresponds to the
extended two-site Bose–Hubbard model with the Jordan–Schwinger realization of the SU(2)
algebra: J+ = a†b, J− = b†a, J0 = (a†a − b†b)/2, where a† (a) and b† (b) are boson creation
(annihilation) operators in two traps or different hyperfine states. In this case, the first term
in (1) describes the tunneling between the two sites, characterized by the strength parameter
t; the second term in (1) is equivalent to an on-site single-particle energy which originates
from the external potentials and is related to the on-site part of the kinetic energy, while the
third term in (1) describes double-boson hopping between the two sites, characterized by the
strength parameter δ. And indeed, as shown in [25] through a systematic expansion in powers
of the lattice attenuation factor ε � 1 for the Hamiltonian including one- and two-body
interactions describing systems of interacting, ultra-cold, spin-zero, neutral bosonic atoms
that are harmonically trapped and subject to an optical lattice potential, the final extended
Bose–Hubbard Hamiltonian in the two-site case is equivalent to the form shown in (1) since
the total number of bosons N̂ = a†a+b†b is a conserved quantity. As shown in [25], U/δ ∼ ε2

is a small quantity and is often neglected. If there is no dipole interaction among the bosons,
the parameter δ > 0(<0) when U > 0(<0); however, the sign of δ may be the same as or
opposite to that of U when dipole interaction among bosons must be considered [26].

Let |JM〉 be basis vectors of the SU(2) irrep with J = N/2, where N is the total number
of particles in the system. Generally, the Hamiltonian (1) can be diagonalized numerically in
the Hilbert subspace spanned by {|JM〉}, which is N + 1 dimensional. However, it can be
shown that

|z〉 = ezJ+ |J − J 〉 (2)

is an eigenstate of (1) when the parameters δ and z satisfy a special condition. With the help
of the following relations:
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J0e
zJ+ |J − J 〉 = ezJ+(−J + zJ+)|J − J 〉, (3a)

J−ezJ+ |J − J 〉 = ezJ+(2zJ − z2J+)|J − J 〉, (3b)

J 2
0 ezJ+ |J − J 〉 = ezJ+(J 2 − z(2J − 1)J+ + z2J 2

+ )|J − J 〉, (3c)

J 2
−ezJ+ |J − J 〉 = ezJ+(2J (2J − 1)z2 − 2(2J − 1)z3J+ + z4J 2

+ )|J − J 〉, (3d)

one can easily check that the eigen-equation Ĥ |z〉 = E(z)|z〉 requires that coefficients
proportional to J+ and J 2

+ are zero. The eigen-energy in this case is

E(z)/t = −2zJ + V J 2 + 2δ̄z2J (2J − 1), (4)

where V = U/t . The zero-value condition for the coefficient proportional to J 2
+ gives

δ̄ = δ/t = − V z2

1 + z4
, (5)

which shows that the sign of δ̄ must be opposite to that of V, which corresponds to a situation
when dipole interaction among bosons is taken into account [26], while the zero-value
condition for the coefficient proportional to J+ provides the ansatz equation to determine
z with

z6 + xz5 − z4 + z2 − xz − 1 = 0, (6)

where x = V (2J − 1), which provides for four real roots and two complex roots. Only four
real roots correspond to possible solutions and the condition of the quasi-solvability, which
are

zc,± = ±1, (7)

z± = −x

4
− 1

4

√
8 + x2 ± 1

2

√
x2

2
− 2 +

x

2

√
8 + x2 (8a)

for x � 1 and

z± = −x

4
+

1

4

√
8 + x2 ± 1

2

√
x2

2
− 2 − x

2

√
8 + x2 (8b)

for x � −1.
According to relation (5), the first two solutions given by (7) lead to large amplitude of

double-boson hopping with δ̄ = −V/2, which may be irrelevant to real situations. The other
two solutions, (8a) and (8b), correspond to weak double-boson hopping cases when the dipole
interaction among bosons is considered as shown in [26].

It can be verified that z± < 0 and E(z) > 0 is always satisfied for V > 0 with x > 1.
Therefore, the solution (8a) corresponds to an excited state. Actually, it can be verified by
direct diagonalization that E(z) with x � 1 is the highest excited state in the system. When
V < 0 with x < −1, z± > 0 and E(z±) < 0 is always satisfied. Though a direct proof
is in demand, one can check numerically in comparison with direct diagonalization for any
accessible J that E(z±) with x � −1 corresponds to the ground-state energy of the system.
It should be noted that two solutions of (8b) denoted as z− and z+ with 0 < z− < z+ and
z−z+ = 1 result from the S2 symmetry with respect to the site exchange a � b in the system
when U < 0, namely |z−, (a, b)〉 = |z+, (b, a)〉, which provides for the same ground state of
the system with E(z+) = E(z−). Therefore, in the following, we set z = z+ when x � −1
and only focus on the case where the on-site interaction is attractive with U < 0 similar to
the case studied in [20], in which the effective interaction energy for the internal Josephson
dynamics is negative when the model is used to describe two superconductors connected with
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Figure 1. The ground-state energy per particle as a function of x, where S denotes the super-fluid
region, while T denotes the transitional region. The crossing point of S and T shows the critical
point in the system with E(c)(z)/(Nt) = −3/4 at x = −1.

a Josephson junction [27]. With this choice, the ground-state properties of the model described
by the Hamiltonian (4) can be studied by using the coherent state ansatz (2).

It can be shown from (8b) that z = zc,+ = 1 with δ = −U/2 is also a ground-state solution
with δ = −U/2 = 0. Therefore, z = zc,+ = 1 with δ = −U/2 corresponds to the super-fluid
phase of the system, which is independent of x, and is only characterized by the condition
δ = −U/2. The transitional phase is characterized by −∞ < x = (N − 1)U/t < −1,
and the Mott-insulate phase is characterized by x = (N − 1)U/t → −∞. Hence,
xc = (N − 1)Vc = −1 corresponding to z = zc,+ = 1 is the critical point of the system
in this case.

One can easily verify that the ground-state energy per particle in both the superfluid region
with δ = −U/2 and the transitional region with −∞ < x < −1 is linear in x in the large-N
limit. The ground-state energy per particle in the superfluid region is E(S)(z)/(Nt) ≈ −1−x/4
with −∞ < x < 0 in the large N limit, while it is E(T)(z)/(Nt) ≈ 3x/4 in the transitional
region with −∞ < x � −1, which varies as a function of x in the two different phases as
shown in figure 1. Though the ground-state energy per particle in both regions are the same at
the critical point, it is obvious that the first derivative of the ground-state energy per particle
in the super-fluid region with respect to x and that in the transitional regions are different
at the critical point xc = −1, which shows that the super-fluid to the Mott-insulate phase
transition is a first-order quantum phase transition. The first derivatives of other quantities,
such as the occupation probabilities of a- and b-bosons, local particle number fluctuations, etc,
with respect to the control parameter x in both regions, are also different at the critical point
x = xc.

Since the ground state can be expressed as an SU(2) coherent state, many ground-state
properties of the model can be studied analytically by using the following results:

〈z′|z〉 = (1 + z′z)N , (9a)

〈z′|J0|z〉 =
(

−J + z
∂

∂z

)
〈z′|z〉, (9b)

〈z′|J+|z〉 = ∂

∂z
〈z′|z〉, (9c)

〈z′|J 2
0 |z〉 =

(
J 2 − z(2J − 1)

∂

∂z
+ z2 ∂2

∂z2

)
〈z′|z〉, (9d)
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Figure 2. The occupation probabilities of a- and b-bosons (10) and local particle number
fluctuations (11) as functions of x = (N−1)U/t . The left panel shows the occupation probabilities
of a- and b-bosons, ρa and ρb in the transitional region, and those in the super-fluid region denoted
as S with ρ

(S)
a = ρ

(S)
b = 0.5. The right panel shows the local particle number fluctuation

(�na)2/N = (�nb)2/N in the super-fluid (S) and transitional (T) regions.

according to the relations shown in (3). For example, the occupation probabilities of a- and
b-bosons are given by

ρa = 1

N
〈z|a†a|z〉/〈z|z〉 = 1

N
〈z|J0|z〉/〈z|z〉 +

1

2
= z2

1 + z2
, (10a)

ρb = 1

N
〈z|b†b|z〉/〈z|z〉 = 1

2
− 1

N
〈z|J0|z〉/〈z|z〉 = 1

1 + z2
, (10b)

and the local particle number fluctuation at site a or b is the same with

(�na)2 = (�nb)2 = Nz2

(1 + z2)2
, (11)

where �na = a†a − Nρa , �nb = b†b − Nρb and A = 〈z|A|z〉/〈z|z〉 for any operator A.
Figure 2 shows the occupation probabilities of a- and b-bosons as functions of x = (N−1)U/t

with z = z+ in the transitional region and z = 1 in the super-fluid region, from which it is
shown that the occupation probabilities of a- and b-bosons are the same with ρa = ρb = 0.5
in the super-fluid region with δ = −U/2, while more and more particles will occupy one of
the sites with increasing values of (N − 1)|U |/t toward the Mott-insulate phase. It becomes
a Mott-insulate when x = (N − 1)U/t → −∞. The local particle number fluctuation is
proportional to the total number of particles in the system with (�na)2 = (�nb)2 = N/4 in
the super-fluid region, while it drastically decreases with increasing values of (N − 1)|U |/t

in the transitional region, and becomes negligible when x � −1.
As is known, the entanglement measure for any pure bipartite system is defined by

η = −Tr(ρa logN+1 ρa) = −Tr(ρb logN+1 ρb), (12)

where ρa is the reduced density matrix obtained by taking the partial trace over the subsystem
b, and similarly for ρb. We use the logarithm to the base N + 1 instead of base 2 to ensure that
the maximal measure is normalized to 1. The explicit form of (12) for the present case is

η = −
N∑

k=0

(
N

k

)
z2k

(1 + z2)N
logN+1

((
N

k

)
z2k

(1 + z2)N

)
, (13)
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Figure 3. The entanglement measure (13) of the model as a function of x. The left panel shows the
measure in the super-fluid (S) (straight solid line) and transitional (T) (dotted curve) regions with
N = 1000 particles. In the transitional region, the solid curve indicates the empirical fit to (13)
with η(x) = −2.491 78 + 3.185 86/|x|0.05. The right panel shows the measure with N = 10 000
particles, in which the solid curve in the transitional region indicates the empirical fit to (13) with
η(x) = −20.8643 + 21.5047/|x|0.005.

Table 1. The ground-state energy per particle E(z)/(Nt) of the extended Bose–Hubbard model
(EBHM) with the Hamiltonian shown in (1) and the standard Bose–Hubbard model (BHM) with
δ = 0 for U/t = −0.011 and different number of particles.

BHM EBHM BHM EBHM

N = 100 −1.003 28 −0.760 457 N = 1000 −2.841 −2.839 54
N = 300 −1.129 16 −1.087 23 N = 3000 −8.280 31 −8.280 26
N = 500 −1.5572 −1.546 47 N = 5000 −13.7682 −13.7682

which depends not only on x but also on N. It is obvious that η decreases with increasing values
of |x| or N. A simple fit to (13) for different large-N cases shows that η ≈ c1 + c2/|x|α , where
c1, c2 and α > 0 are coefficients which are N-dependent. Figure 3 shows the entanglement
measure (13) of the system as a function of x and an empirical fit to the curve for N = 1000
and 10 000, respectively.

Furthermore, the Hamiltonian (1) will become the standard Bose–Hubbard model in the
large-N limit for finite U/t or large (N − 1)|U |/t cases with finite N, namely the third term in
(1) will be negligible in such cases. Hence, |z±〉 tends to be the ground state of the standard
Bose–Hubbard model in the large-N limit for finite U/t or large (N − 1)|U |/t cases with
finite N. To prove this, we calculate its contribution to the ground-state energy, which is

δ〈z+|(J 2
+ + J 2

−)|z+〉 = −2Nx
z4

+

(1 + z4
+)(1 + z2

+)
2

∣∣∣∣
x�−1

→ −2N/x3. (14)

The result indicates that the ground-state energy of the extended Bose–Hubbard model only
deviates from that of the standard Bose–Hubbard model by a term of O((U/t)−3N−2) for
large-N cases. Therefore, the third term of (1) is indeed negligible in the large-N limit for
finite U/t or large (N − 1)|U |/t cases with finite N. Table 1 shows the ground-state energies
per particle of the extended Bose–Hubbard model with the Hamiltonian shown in (1) and that
of the standard Bose–Hubbard model with δ = 0 for U/t = −0.011 fixed and N = 100, 300,
500, 1000, 3000 and 5000, respectively, which indicates that the ground-state energies of the
two models become the same when N � 5000 in this case. Table 2 shows the ground-state
energies per particle of the two models for N = 500, 1000 and 3000, respectively, with

6
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Table 2. Ground-state energy per particle E(z)/(Nt) of the extended Bose–Hubbard model
(EBHM) with the Hamiltonian shown in (1) and the standard Bose–Hubbard model (BHM) with
δ = 0 for N = 500, 1000 and 3000 and different values of x = (N − 1)U/t with U < 0.

N = 500 N = 1000 N = 3000

BHM EBHM BHM EBHM BHM EBHM

x = −5 −1.452 52 −1.438 65 −1.451 26 −1.437 39 −1.450 42 −1.436 56
x = −10 −2.720 91 −2.603 09 −2.6025 −2.600 58 −2.600 83 −2.598 91
x = −20 −5.060 25 −5.059 77 −5.055 −5.054 76 −5.051 67 −5.051 42
x = −30 −7.548 36 −7.548 29 −7.540 83 −7.540 77 −7.535 83 −7.533 76
x = −40 −10.045 −10.045 −10.035 −10.035 −10.0283 −10.0283

different values of x, which indicates that the ground-state energies of the two models become
the same when x � −40 for these cases. In these two tables, the ground-state energy of the
standard Bose–Hubbard model is obtained by direct matrix diagonalization.

3. Concluding remarks

In summary, we have shown that a special Lipkin–Meshkov–Glick (LMG) model that is
equivalent to the extended two-site Bose–Hubbard model is quasi-exactly solvable. The
quasi-exact solvability requires that the double-boson hopping strength δ and the on-site
interaction parameter U satisfy a restricted condition. When the on-site interaction is attractive,
the ground state of the model is an SU(2) coherent state. The ground-state properties of the
model, such as ground-state energy, local particle occupation probabilities and particle number
fluctuations, and entanglement measures of the system are studied analytically, which show that
the model has three distinct phases, denoted as the super-fluid, transitional and Mott-insulate.
With increasing values of (N − 1)|U |/t , the system undergoes a first-order quantum phase
transition with the critical point |Uc|/t = 1/(N − 1), and becomes the Mott-insulate when
(N − 1)|U |/t → ∞. Furthermore, our analysis shows that the model becomes the standard
two-site Bose–Hubbard model in the large-N limit for finite U/t or large (N − 1)|U |/t cases
with finite N, which proves that the ground state of the standard two-site Bose–Hubbard model
becomes an SU(2) coherent state in such cases.

More importantly, it is now clear that an SU(2) coherent state is the ground state of the
standard two-site Bose–Hubbard model in the large-N limit only when (N − 1)|U |/t � 1
corresponding to a Mott-insulate phase. As has been shown in [20], the critical point of the
standard Bose–Hubbard model is given by (N−1)|U |/t ∼ 1 based on the results obtained with
finite N, of which the ground state cannot be described by an SU(2) coherent state. SU(2) is
just the dynamical symmetry group of the standard two-site Bose–Hubbard model. Therefore,
one should be cautious when the coherent state algorithm [23, 24] or other similar semi-
classical methods are applied to study critical point phenomena in quantum phase transitions
of many-body systems. Analysis of other integrable models, such as the one related to atom-
molecule Bose–Einstein condensate context [28], may be also possible. Related work is in
progress.
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